📚

All Subjects

 > 

🧪 

AP Chem

 > 

🍊

Unit 8

8.8 Properties of Buffers

4 min read•may 29, 2021

fiveable-dylan

Dylan Black


AP Chemistry 🧪

Bookmarked 6k • 251 resources
See Units

8.8: Properties of Buffers

In this section, we'll review what buffers are and how they're formed and talk about why we care about buffers in the first place. In chemistry, we often look for solutions with special properties whether that be a specific compound, reaction, or observation made. In the case of buffers, these solutions resist changes in pH. This means that adding strong acids or strong bases to them does not impact the pH as much. It's important to note, however, that buffers are not immune to changes in pH and do have a certain buffer capacity that we'll talk about later. 
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2F-jrHYgH8pXKBj.gif?alt=media&token=b2900019-2e3e-49db-9080-919a1804778d

Get it? Buffering? We're hilarious. Image from GIPHY

Review of What Buffers Are

Like we mentioned, buffers are special solutions that are resistant to pH changes via. adding acids or bases to them. Buffers are formed in a very specific way: creating a solution of a weak acid and its conjugate base (or a weak base and its conjugate acid, but the former is much more common).
It's important that the acid you create a buffer with is weak because otherwise, the conjugate base would not be a significant base. For example, a mixture of HCl and NaCl would not be a buffer despite being a combination of an acid (HCl) and its conjugate base (Cl-).
You may be asking then why any weak acid isn't a buffer. This is because at equilibrium there is so much more acid than the conjugate base (assuming a low Ka) that the buffer effects are negligible. In order for a buffer to be effective, you must have comparable concentrations of acid and conjugate base. In fact, the maximum buffer, the point at which the buffer most effectively resists pH change, occurs when the concentration of acid is equal to the concentration of conjugate base.
Let's solidify this concept by doing a few practice problems. For each of the pairs of compounds given, identify them as a pair that would form a buffer or not form a buffer:
  1. NaOH and Na+: The answer to this question is no. This is because although NaOH and Na+ are a base-conjugate acid pair, remember that NaOH is a strong base. This means that Na+ is not a significant acid meaning that this will not form a buffer.
  2. CH3COOH and Ca(CH₃COO)₂: The answer to this question is yes! This pair when dissolved together will form a buffer. CH3COOH is a weak acid (acetic acid AKA vinegar) with a Ka=1.8 * 10^(-5). Ca(CH3COO)2 is calcium acetate which will dissociate into Ca2+ (a spectator ion as far as the buffer is concerned) and 2 moles of CH3COO-, the conjugate base of CH3COOH! Because acetic acid is a weak acid, CH3COO- is a significant base meaning that we will have a buffer.
  3. NH3 and NH4NO3: This pair does form a buffer. NH3 is a weak base and thus NH4+ is a significant acid (and its conjugate acid) meaning this forms a buffer. In this case, like Ca2+ in the previous example, the nitrate ion is simply a spectator.
  4. HI and I: Like #1, this pair does not form a buffer. This is because HI is a strong acid and thus cannot form buffers with its conjugate base I- because I- is not a significant base.
  5. KI and PbNO3: It should be pretty easy to see that this pair does not form a buffer. There are no acids nor bases involved. In fact, when you mix KI and PbNO3, you get the "golden rain" reaction, a precipitation reaction that forms PbI2 and KNO3. Take a look!
    https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2F-FYkiYWIj5KIV.jpg?alt=media&token=9f1cabbf-a0ca-44bc-ad75-d5a135444bd1

    Image From ChemTalk

    What Makes Buffers Cool: pH Resistance

    Let's dive a bit deeper into why buffers have the pH resistance that makes them so interesting and useful to study. Buffers have pH resistance because of the presence of an acid and a base that do not actively react together at equilibrium. This graphic shows what happens when an acid or a base are added to a buffer:
https://firebasestorage.googleapis.com/v0/b/fiveable-92889.appspot.com/o/images%2F-nwhcAp4s83sZ.png?alt=media&token=3da51e99-25fa-46ed-9a24-4b99de1ab0a1

Image From LibreTexts

When a strong acid is added to a buffer, the conjugate base eats it up and forms HAn (An = anion). In the case of if this wasn't a buffer, the strong acid would completely dissociate into H+ increasing [H+] to a much higher degree. Similarly, if OH- from a strong base is added to a buffer, the HAn present in solution reacts with it to form An- and H2O instead of letting it produce pure OH-. It is these two reactions that lead to buffers being resistant to pH.

Was this guide helpful?

Fiveable logo
Join Fiveable for free
Create a free account to bookmark content and compete in trivia
Hours Logo
Studying with Hours = the ultimate focus mode
Start a free study session
Browse Study Guides By Unit
📆Big Reviews: Finals & Exam Prep
✍️Free Response Questions
✏️Frequently Asked Questions
🧐Multiple Choice Questions
⚛️Unit 1: Atomic Structure and Properties
🤓Unit 2: Molecular and Ionic Compound Structures and Properties
🌀Unit 3: Intermolecular Forces and Properties
🧪Unit 4: Chemical Reactions
👟Unit 5: Kinetics
🔥Unit 6: Thermodynamics
⚖️Unit 7: Equilibrium
🍊Unit 8: Acids and Bases
🔋Unit 9: Applications of Thermodynamics
FREE AP chem Survival Pack + Cram Chart PDF
Sign up now for instant access to 2 amazing downloads to help you get a 5
📱 Stressed or struggling and need to talk to someone?
Talk to a trained counselor for free. It's 100% anonymous.
Text FIVEABLE to 741741 to get started.
© 2021 Fiveable, Inc.